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ABSTRACT

We spell out a demonstration that, within the framework of quantum field the-
ory, no faster-than-light communication can be established between observers.
The steps of the demonstration are detailed enough to pinpoint which properties
of the theory have been misinterpreted in previous papers claiming the existence
of effects that could permit such communication. The developments described
here can also be used to analyze future papers making similar claims.
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May 18, 1988

QUANTUM FIELD THEORY CANNOT PROVIDE
FASTER-THAN-LIGHT COMMUNICATION

1 Backgroundand Scope

1.1 Purpose

In all relativistic theories, "causality," i.e., the requirement that causes precede effects in

time in all space-time rest frames, rules out communication between observers 1 at a speed

faster than light, (see Ref. [1] for instance). In textbooks on relativistic quantum field the-

ory such as Ref. [2], it is commonly asserted that this particular consequence of causality

is ensured by the vanishing of commutators or anticommutators, in the Heisenberg repre-

sentation, of field operators defined at space-time points outside of each other's lightcone.

However, one can find articles in the literature claiming existence of physical phenomena

supposedly compatible with quantum theory and able, in principle, to allow faster-than-

light communication, [3], [4], and [5]. Then, in these articles, a parallel is drawn between

these physical phenomena and the well-known faster-than-light "influences" evidenced by a

detailed analysis, [6], [7], [8], [9], [10],[11],and [12],of the famous Einstein-Podolsky-Rosen

(EPR) paradox, [13].The goal of this paper is to spell out as complete as possible a demon-

stration that the only known version of relativistic quantum theory, Le., quantum field

theory, is indeed incompatible with faster-than-light communication and then, to locate the

specific misinterpretations of quantum field theory in the quoted papers. Furthermore, it is

hoped that, if future claims for physical phenomena providing faster-than-light communi-

cation are made, enough details will be found here to make it easy to identify the property

of relativistic quantum theory that these phenomena will violate.

1In the literature, communication between observers is often referred to as "signaling," "transmission of
a signal," or "exchange of information."
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One can set up situations where, between results of measurements made at points outside

each other's lightcone, quantum theory predicts correlations that can be explained only by

influences propagating faster than the speed of light. But, it is common belief that these

influences cannot be used for communication. In the literature, one can find several more-

or-less complete demonstrations that the phenomenon of instantaneous collapse of the state

function, as it is described by quantum theory, does not provide a means of faster-than-light

communication between observers, [14], [15], [16], [17], and [18]. However, the argument

has never been made with every logical step spelled out explicitly. In most of these papers,

a calculation has been done in a particular case chosen as a typical example. In others,

the demonstration uses the factorization property of the evolution operator, once a system

can be described as two noninteracting subsystems. Demonstration that quantum field

theory implies factorization of the evolution operator for subsystems outside of each other's

light cone has to be found elsewhere. The goal of this paper is to complement, not to

invalidate, these previous demonstrations.

Our demonstration does not require strict Lorentz invariance, only commutation rules of

operators in the Heisenberg representation outside of the light cone and well known principles

of quantum theory. In addition, in the world described by relativistic classical physics, we

assume the particular consequence of causality that makes all classical effects propagate

at a speed no faster than light. This demonstration shows only that the quantum theory

formalism, even in the context of measurements and state-function collapses, does not

provide a mechanism that would permit faster-than-light communication.

1.2 Preliminaries

Let us consider a given space-time rest frame and, in that rest frame, two humans located

at some distance, .¥, from each other and trying to communicate in a time T such that

T<X
c (1)

where c is the velocity of light. They can succeed only if one of them, the sender, located at

a point 5, can take an action that changes the probability distribution of a quantity M that
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the second human, the receiver, can be]made aware of at his location, R, at the distance -X"
from S. Between the apparatus used to observe that quantity M and the location R of the

receiver, classical means are used. Ther~fore, the apparatus at the time tr of the observation

is entirely in the space-time domain 1JRcorresponding to the receiver's past lightcone, (see
I

Fig. 1). The relevant probability distribution is the probability distribution of M, when the

results of observations made by others outside of the receiver's past lightcone 1JR are not

known, Le.,' in the terms used in probability theory, the probability distribution that is not

"conditional" on the results obtained outside of 1JR. The correlations between observables

at space like separated points in space-time, due to the faster-than-light influences revealed

by the EPR paradox and alluded to above, are of no relevance here. One can find out about

these correlations only after the results of observations have been gathered at one place

using classical means of communication, which we assume never go faster than light.

We choose the location S of the sender as the origin of the space coordinates. The origin

of time is the time at which he initiates his action. He can set up equipment in a region

surrounding him using classical phenomena, therefore phenomena propagating at speeds

equal to or slower than the velocity of light. The region of space-time that he can reach this

way is the forward lightcone of the space-time origin S, Le., the domain Ds shown in Fig. 1.

Take two space-time points, 8 in 1J5and r in DR, respectively, such that the time coordinate

tll of 8 precedes the time coordinate tr of r. What is important for the demonstration is

that any such two points are outside of each other's lightcone. This can be clearly seen

from Fig. 1.

Let us assume that there is a quantum system ~ involved. That system is associated

with "observable" quantities. The value of one of them, M, becomes known to the receiver

by way of a process, M , called a "measurement" in accordance with the terminology used

in quantum theory. The possible values of Mare Jl. The probability that the observable

M turns out to have the value JL is PJ.L. Our demonstration consists of showing that PJ.Lis

independen t of any action that the sender can take between time 0 and the time tr of the

measurement made in 1JR.
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Figure 1: Space-time domains associated with the two humans trying to communicate
faster than the speed of light. The sender is at the origin S and V5 is his future light-
cone, where he can set up equipment using classical (therefore not faster-than-light)
phenomena. The receiver is at point R, and the domain VR is his past lightcone, from
which he can receive the results of measurements using classical phenomena.

Our first hypothesis is that the probabilities of observations, P p., can be obtained using

the rules of quantum theory, [19]. Though the Heisenberg representation is best, in field the-

ory, to express the commutation rules outside of the lightcone, we will use the Schroedinger

representation to carry out our demonstration. This representation was the one used by

authors claiming those effects allowing faster-than-light communication, [3] and [4]. To

make it easier to analyze these previous publications, it has been judged best to use the

same representation. In this Schroedinger representation, the observable M is associated

with a time-independent operator M and the quantum system with a time-dependent state

function 17P(t)).Then, M is the same whether or not the Hamiltonian operator has been

changed by the sender.

The operator M has eigenvalues JLand, for each eigenvalue JL,np' mutually orthogonal
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eigenvectors IXk,I-').Then,

PI-' =
n",

I 1

2

{; (n,,, I,p(tr ))
n",

~ (1/;(tr) IXk,l-') (Xk,1-'11/;(tr ))
k=1

(2)=

= (1/;(tr)IIT~I1/;(tr))

where ITI-'is a projection operator

n",

IT~ = ~ IXk,~)(Xk,~1
k=1

(3)

11/;(t))is given by the equation

11/;( t )) = U ( t) 11/;( 0) ) (4)

and the evolution operator U(t) satisfies

dU = -iHU(t)dt
(5)

where H is the Hermitian Hamiltonian operator; U(t) is unitary, and its boundary condition

at t =0 is

U(O) = I (== the identity operator) (6)

2 Possible Actions By The Sender

In quantum theory, there are two ways in which the human we call the sender can act on

a quantum system. He can either change the conditions surrounding him to modify the

Hamiltonian operator H, or he can perform a measurement. Let us first consider the effect

of modifying the Hamiltonian.

2.1 Sender Changing the Hamiltonian

Two situations have to be compared, the first governed by an unmodified Hamiltonian,

which we refer to as the "unchanged" situation, and the second governed by the modified
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Hamiltonian, which we refer to as the "changed" situation. In the unchanged situation, Le.,

if the sender takes no action, the Hamiltonian has a value

H =Ho , (7)

and the evolution operator is Uo(t), satisfying Eq. (5), Le., now

dUo= -iHoUo(t) .dt (8)

In the unchanged situation, there is a probability PO,p.that M = J.L. It is given by

applying Eqs. (2) and (4) to the case where the Hamiltonian is unmodified, as in Eqs. (7)

and (8):

Po,p. = (?j7(O)IUJ(tr)IIp.Uo(tr)I?j7(O») = (?j7(O)ITIp.(tr)I?j7(O») (9)

where the superscript t indicates Hermitian conjugate, and TIp.(tr) is defined by

- t
IIp.(tr) = Uo(tr)ITp.UO(tr). (10)

From now on, the symbols H, U, and Pp. refer to the changed situation, in which the

sender takes some action to modify the Hamiltonian operator H. Then

H=Ho+~H(t) . (11)

2.1.1 The Change in the Evolution Operator

Using the operator U(t), as defined by Eq. (5), for the changed situation and Uo(t) defined

by Eq. (8) for the unchanged one, we can define

Jif(t) = UJ(t)U(t)

d: = -iUJ(t)(H - Ho) U(t) = -i~H(t)W(t)

(12)

(13)

where

~H(t) =UJ(t)~H(t)Uo(t) . (14)

Then,

p ~ = (1/1(0)1ut (tr )ITp.U( tr) 1?j7(0») = (?j7(O)IJift (tr )fIp.( tr )Jif( tr )17P(0») . (15)

6



It is convenient to define the operator A(ts):

t -A(t,,)= W (ts)II~(tr)W(ts) (16)

dA t (
- - - -

)dts = -iW (t,,) II~(tr)LlH(ts) - LlH(ts)II~(tr) Wets)
(17)

because A(ts) allows one to express both Po,~ and p~

Po,~ = (1P(O)IA(O)I1P(O))

p~ = (1P(O)IA(tr)11P(0))

(18)

(19)

( ) itr dA

p~ - Po,~= (1P(0)1 A(tr) - A(O) 11P(0))=(1P(0)1 t~=Odt" dts 11P(0)) . (20)

Though we are using the Schroedinger representation, we now recognize that we are

using operators, such as fI~(tr) and LlH(t), that we would naturally be using in a Heisen-

berg representation, more specifically in the Heisenberg representation corresponding to

the unchanged situation. In that representation, any physical quantity 0 is associated with

an operator (j as, in the Schroedinger representation, it is associated with an operator O.

Furthermore, (j and 0 are related by the unitarity transformation

- t
0 =Uo(t)OUo(t) . (21)

From Eqs. (17) and (20), it is easy to see that the two probabilities Po,~ and p~ are

equal if the modification LlH(t,,) in the Hamiltonian operator commutes with the projection

operator fr~( tr) for all times t" between 0 and tr. For all these times, the time interval

tr - t" between the sender's action and the receiver's measurement is positive. Therefore,

the sender's action in the domain Vs is outside of the light cone of all points of the receiver's

apparatus in VR, (see Fig. 1). This "outside-of-the-lightcone" condition is what will be used

to demonstrate that the Hamiltonian change ~H(t,,) and the projection operators fI~(tr)

commute. Then, communication faster than light by modification of the Hamiltonian will

have been shown to be impossible.
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2.1.2 The Role of Field Theory

Our second hypothesis is that the probability distributions can be computed using the for-

malism of quantum field theory, [2]. In the Schroedinger representation, we define field

operators, 4>j(x), at all points of spatial coordinates x. There is a Hamiltonian density

corresponding to an operator hex, t), constructed from the field operators 4>j(x) and their

derivatives, defined at the same point. Of course, if the sender takes a time dependent

action, hex, t) is time-dependent. The total Hamiltonian can be expressed as

H = J h(x,t)(dx)3 . (22)

The unitary transformation of Eq. (21) associates those operators in the Schroedinger

representation to counterparts, 4>j(x,t) and hex, t), in the particular Heisenberg representa-

tion that corresponds to the unchanged situation. Hypothesis 2 means also that, because of

the way relativistic quantum field theory is constructed, the field operators in the Heisen-

berg representation, 4>j(x, t), defined at two points of space- time with space like separation,

commute, unless they correspond to Fermion fields because then, they anticommute. The

Hamil tonian density h( x, t) is an even function of all Fermion field operators; therefore

h(x,t) defined at some point of space-time (x,t) commutes with all field operators 4>j(x',t')

defined at other points (x', t') outside of the light cone of the space-time point (x, t).

Our third hypothesis is implicit in quantum field theory. The action of a human on

quantities defined at some point of coordinates x and t results only in changes f:1h(x, t)

of the Hamiltonian density operator h( x, t) defined at the same point. It follows that the

change f:1h(x, t) provoked by the human called the sender is not zero only in the domain

Ds. Therefore, for ts < tr, the f:1h(x,ts) for any x commutes with the operators 4>j(Xr,tr)

for all (xr, tr) in the past lightcone DR of R. Then, from Eq. (22), we see that, for ts < tr,

~H(ts) also commutes with all those 4>j(Xr,tr).

Our fourth hypothesis is similar to our third. A measurement M performed in DR at

time tr corresponds to a measurement operator M that is a function of the field operators

<Pj(xr) in DR and of their derivatives. It follows that the operators TIll' constructed from
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the eigenvectors IXk,~) of Musing Eq. (3), are also functions of these cPj(xr). Then the

fI~(tr) are functions of the Jj(xr, tr) in 1)R.

According to both Hypotheses 3 and 4, TI~(tr) commutes with 6.fI(ts) for all ts between

0 and tr. Then, Eqs. (17) and (20) imply that the probabilities P1J.and PO,J.£ are identical.

The probability distributions of M, i.e. of what the receiver can observe, are the same

whether or not the sender takes an action to modify the Hamiltonian H. Faster-than-light

communication cannot be established by changing the Hamiltonian.

2.2 SenderPerforming a Measurement

Let us now turn to the effect that the sender can have by performing a measurement Ms

with an apparatus that he can set up at time ts in his future light cone 1)s, (see Fig. 1).

Of course, the receiver does not know the value J1.sfound for the observable Ms in the

measurement Ms. In accordance with our first hypothesis, for each value J1.s,there are

eigenvectors IXk,J.£,)and a projection operator TIs,~" defined for Ms, as IXk,J.£)and TI1J.in

Eq. (3) are defined for M. The probability PS,1J.fJthat Ms takes the value /l-sis

Ps,~. = (?/J(ts)ITIs'~fJ I?/J(ts)) = (?/J(O)ITIs'1J.fJ(ts)I?/J(O)) (23)

where

- t
IIs,1J.fJ(ts)= Uo(ts)IIs,1J.fJUo(ts) . (24)

2.2.1 Collapse of the State Function

At the time of the measurement Ms, the state function collapses. After an infinitesimal

time lapse €, if /l-swas the outcome of Ms,

I?/J(ts + E)) = 1 n"'fJ

.jp ',1', (; Ixk,I', ) (n'I',I,p( t. ))
1
,--TIs,1J.fJ I?/J(t s))
S,1J.fJ

1 -
-Uo( ts )IIs,1J.fJ(ts )I?/J(O))

(25)=

=

9



The conditional probability of the outcome J-Lof the measurement M performed by the

receiver in the domain DR at time tr is

P1I(}L8)= (1/;(t8 + €)IUlrltaII1IUtrltal1/;(t8 + f») (26)

where Utrlta is the evolution operator between times t" and tr, and

Utrlta = UO(tr)UJ(ts) . (27)

If we take into account Eqs. (10), (24), (25), and (27), Eq. (26) becomes

1 - - -
P1I(}Ls)= p (1/;(0)IIIsl1l.(ts)TI1I(tr)TIs,1la(tS)11/;(0»).",118

(28)

Since the receiver does not know the result of M8 at ts, the relevant probability distri-

bu tion is

P1l = L: PS,1I. P1I(}L8) = (1/;(O)lf 1111/;(0») (29)
11.

where

r1l = L:ft"'1I.(t8)IT1I(tr)IT"'1I.(t,,) . (30)
11.

For each JL,we will demonstrate that

f1l=TI1I(tr) . (31)

This way, P1I of Eq. (29) will be shown to be equal to the distribution PO,1lof Eq. (9),

corresponding to the case in which the sender does not take any action. Therefore, the

action of the sender will be shown to have no effect on the probability distribution of the

quantity M that the receiver can observe.

If R is outside of the lightcone of S, Eq. (31) will be shown to follow from Eq. (30)

using properties of relativistic quantum field theory.

2.2.2 Field Theory and Conservation of Probability

According to Hypothesis 2, the field operators 4>j(xs,t,,) at points (x",ts) in 1Js commute

(or anticommute for Fermion fields) with field operators ~j(xr,tr) at points (xr,tr) in DR,
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when ts < tr. This follows from the fact that two such points are outside each other's

light cone. Let us add the obvious proviso that the measurement operators must also be

even functions of the Fermion fields. It follows that the measurement operators if and JVIs

in the Heisenberg representation commute. Therefore, the projection operators ITJ.L(tr) and

ITs,J.L.(t.,),which are functions of if and Ms, respectively, also commute. Thus, r J.Lof Eq.

(30) becomes

r" = 2: (fr.,,,, (t.) r fr,,(tr) = (2: TIS,J.L6(ts» )
TIlL(tr) .

J.L, J.L6
(32)

Although, during a measurement, the evolution of the state does not abide with unitarity,

probability still must be conserved. If Eq. (23) is used,

1 = ~P.,,,, = (7/1(0)1(~fr.,,,, (t.») 17/1(0»)
(33)

This equation can be correct for any state function 1"p(O»)only if

2: TIs,J.L..(ts) = I . (34)
J.L.

Introducing this result in Eq. (32), we get Eq. (31) and, therefore, an identical expres-

sion for Eq. (9) and Eq. (23):

PJ.L= PO,J.L for all values of J.L . (35)

In conclusion, according to relativistic quantum field theory, by the act of performing a

measurement, the sender is unable to communicate with another human at a speed faster

than the speed of light.

3 Generalizations

3.1 More Sophisticated Actions by the Receiver

In the scenarios considered so far in Subsecs. 2.1 and 2.2, we assumed that the receiver

performs only one measurement M . Of course it is possible for him, at various times ti,

to perform several measurements Mi corresponding, in the Heisenberg representation, to

operators Mi that do not necessarily commute with one another. We define Mi, IIi,l-£p£Ii,
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and IIi,J.'ias the operators related to measurement Mi as M, ilJ." M, and IIJ.'were related to

M. Let us consider two such measurements, MI at ti and M2 at t2(> tI), both performed

in the past lightcone VR of the location R of the receiver. The action of the sender after time

t1 does not affect the probability distribution of the result of MI, and the demonstrations

of Subsecs. 2.1 and 2.2 show that it cannot affect the distribution of M2 either. We only

have to show that the action of the sender before ti does not affect the joint probability

PJ.'1.J.'2 of both outcomes. To compute that probability distribution, we may as well consider

the case where the sender's action stops at ti. Then the evolution operator Ut,tl between t1

and t2 satisfies Eq. (8) and is equal to the identity operator for t = ti. The only solution is

Ut,tl = Uo(t)UJ (td (36)

regardless of what the Hamiltonian is between t =0 and t = ti.

The rules of quantum theory imply that the joint probability PJ.'l,J.'2is given by an

equation similar to Eq. (2):

PJ.'l,J.''J= (1P(tI)I11I1P(tI)) , (37)

where

11 = IT1,J.'1 Ut~,tl TI2,J.''J Ut2,tl TIt,J.'l . (38)

The operator n is not a projection operator like TIJ.'in Eq. (2), but it does not matter.

The properties of TIJ.'as a projection operator were not used in Subsecs. 2.1 and 2.2.

Furthermore, the operator

- t - - -
n = UO(tl)nUO(tl) = TI1,J.'1(tl)TI2,J.'2(t2)il1,J.'1(td (39)

commutes with all operators defined at points s in Vs such that ts < t1. It follows that

everywhere in Subsecs. 2.1 and 2.2, the operator TIJ.'can be replaced by the operator n,

ir by it, and IIJ.'(tr) by Q. The result is that the joint probability distribution is the same

whether or not the sender has taken an action.

This result can easily be further generalized to the case where the receiver performs any

number of measurements in 'DR,or if he modifies the Hamiltonian as a result of his findings

from any of these measurements.
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3.2 Further Generalizations

Still-more-elaborate scenarios can be envisaged. The sender can perform a series of measure-

ments and of modifications of the Hamiltonian in a row. Some of these modifications of the

Hamiltonian can also be dependent on the result of preceding measurements he performs.

Using the argument developed above, one can show that the last of the sender's actions

did not change the predicted probability of any quantity measurable by the receiver. Then

that last action can be ignored in the prediction of the relevant probability, and we need

only consider the effect of the next to the last action. That next to last action does not

change the probability distribution either; therefore it too can be ignored, and so on until

the first action by the sender is eliminated. At this point, one has shown that no action of

the sender on the state function ItP(t)) can modify the probability of any observation that

the receiver can make at his location.

So far, the state at time t = 0 was supposed to be a pure case of quantum theory, i.e.,

a case described by a single state function ItP(O)). The demonstration can be extended to

mixtures, i.e., to initial states described by several state functions ItPi(O)), each associated

with a weight Wi. Probabilities Pi,~ can be computed from ItPi(O)) as P~ from ItP(O))using

Eqs. (2) and (4). The weighted average of these Pl,~, using the weights Wi, is the predicted

value for the mixed state. The same argument that showed that the probability P ~ was

independent of the sender's action will show that all Pl,~, thus the weighted averages of all

of them, are also independent of the sender's action. In quantum field theory, using mixed

states does not permit faster-than-light communication either.

3.3 Computations Made without Using Field Theory

This demonstration can also be made without requiring the principles of quantum field

theory whenever a quantum system can be described by two or more noninteracting sub-

systems. Consider just two such subsystems, Es and ER, located in different volumes in

space, Vs and VR, and described by the variables qs and qR, respectively. The Hamiltonian
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operator H0 is of the form

Ho =Hs + HR , (40)

where Hs and HR act on the variables qs and qR, respectively. It follows that the evolution

operator Uo(t) factorizes

Uo(t) = Us(t) @ UR(t) , (41)

where Us(t) and UR.(t) are operators acting only on the variables qs and qR, respectively.

Furthermore, all measurements performed in VR will correspond to operators acting only

on the variables qR. All actions taken in Vs, Le., the changes ~H made in the Hamiltonian

operator and the operators corresponding to the measurements in Vs, will affect only the

variables qs. This is the case considered by Refs. [15] and [16]. Independently of the

demonstrations made in Refs. [15] and [16], it is easy to see that this set of assumptions

in plain quantum theory implies that the operators corresponding to the measurements

made in VR commute with the measurement operators in Vs and with the changes in

Hamiltonian ~H and ~iI, in both the Schroedinger and the Heisenberg representations.

In Subsecs. 2.1.2 and 2.2.2, quantum field theory was used to justify this commutation

property in the Heisenberg representation but was not used for anything else. Therefore,

in these conditions, without using field theory, our demonstration can be made just as

well using the properties of plain quantum theory. Then it follows that it is impossible to

establish communication from inside a volume in space Vs to another volume VR, using a

quantum system composed of two noninteracting subsystems located in Vs and VR, even if

the subsystems have interacted strongly in the past. This is true even at speeds less than

the speed of light.

4 Analysis of Other Papers

4.1 Confining a Particle in a Region of Space and then Releasing It

In Ref. [3], near the end, a thought experiment is described to illustrate an alleged violation

of causality by relativistic quantum theory. It involves well-localized particles that are

suddenly released at time t = 0 and, later, have some chance of being detected at a distance
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X at times T < ~. If indeed the. counting of particles at the distance X could depend

on the preparation of the well-localized particles, this effect would provide faster-than-light

communication and violate causality. Our demonstration shows that such dependance is

contrary to the predictions of relativistic quantum field theory. We will now explain how

the mathematical demonstrations made in Ref. [3] and in previous relevant papers [20],

[21], and [22], 2 do not actually contradict our conclusion.

In the quoted papers, we can ignore the statements that are relevant only to one-

particle wave mechanics (known to be nonrelativistic) and analyze only the parts of the

demonstrations that apply to field theory.

4.1.1 Instantaneous Appearance of a: Particle at a Distance

Using our own notation, we first define two volurnes of space: Vs, around a pointS, and

VR, at a distance X from S, with no overlap with Vs, (see Fig. 2). At time t = 0, the initial

state 1.,p(O))corresponds to a classical picture involving a particle of mass m confined in the

volume V s and none in the volume V R' At time t = 0, the state is let free to evolve according

to a free-particle Hamiltonian operator Ho commuting with the momentum operator P and

having positive eigenvalues only. It is claimed that the particle initially confined in Vs has

a nonzero probability to be seen in VR at any time t = T > 0, even before light could

propagate between the two volumes. 3

Of course the description of this phenomenon in terms of the particle initially confined in

Vs and suddenly appearing in VR is suitable in one-particle quantum mechanics but not in

relativistic field theory. In field theory, particles can be created or annihilated, and particles

of the same type are indistinguishable. The one-particle expression of the Hamiltonian Ho

Ho = (p2 + m2)1/2 (42)

used in Ref. [3] for illustration purposes should also be discarded. However, the argument

2Ref. [3] is an elaboration on a previous paper by the same author, [20], whose results were already
generalized in Refs. [21] and [22].

3In Ref. [20], it is stated that, if a particle is definitely in V s at time t = 0, it cannot have a zero
probability to be in V R at two arbitrary but different times, which we call To and T. We take To = 0 for
simplicity.
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~
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Figure 2: Two nonoverlap ping space domains Vs and V R" At time 0, a particle is
confined in Vs and none in V R at the distance X" At any time T > 0, there is a nonzero
probability of detecting one particle in V R' even before light could propagate between
Vs and VR"

can be made in terms consistent with quantum field theory by referring to one particle

instead of the particle appearing in VR and by using only the positiveness property of Ho.

Let us define N(O) to be a quantity equal to 1 when one can say that there is a particle

confined in Vsand 0 when there is none. N(X) is a similar quantity defined for VR; N(D)

and N(X) correspond to operators N(O) and N(--,Y) such that

N(X) =eiPX N(O)e-iPx . (43)

The initial state 1"p(0))satisfies

N( 0 ) 1"p(0)) = 1"p(0))

N(X) 1"p(0)) = O.

(44)

(45)

In Refs. [20], [21], and [22], it is shown that, given the initial conditions ofEqs.(44)
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and (45), the state function necessarily evolves so that, for any T > 0, the probability PNx

to find a particle in VR is not zero; Le.,

PNx = (tP(T)IN(X)ltP(T)) >0. (46)

In Ref. [3], under the more-general conditions where Eq. (42) is not used, it is shown that

this probability does not decrease like an exponential function of (X? Then this nonzero

probability is interpreted as an evidence that the particle initially confined in Vs can reach

VR at a speed faster than light.

According to our demonstration, the nonzero probability of Eq. (46) is the Same regard-

less of the action taken in any space-time region outside of the light cone of the measurement

of N(X) in YR. It would have the same value if the particle were kept confined in Vs, or

if any action was taken in Vs to move it farther away or to transform it into something

else. Such properties do not fit the classical picture of a particle initially confined in Vsand

moving into VR at a superluminal speed.

4.1.2 A Classical Picture of the Phenomenon

A less misleading classical picture can be found to describe the behavior of this quantum

system. Consider the case where the particle in question is an electron, and there is no

other kind of electrically charged particle. Let us define Qs and QR as the electric charges

in Vs and VR, respectively. They correspond to operators Qs and QR, which are integrals of

the charge density operator p(x) over finite volumes. An initial state ItP(O))corresponding

to the picture of an electron confined in Vs and none in VR implies Qs = -1 and QR =0 at

time t = O. Operators N(O) and N(X) having the properties wanted in Refs. [20] and [3]

can be defined from the projection operators TIs,oand TIR,oassociated with the eigenvalue

0 of the operators Qs and QR respectively:

N(O) = I - TIs,o

N(X) = 1- TIR,o

(47)

(48)

ItP(O)) ex N(O) ITR,oIx) , (49)
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where Ix)stands for an arbitrary state such that 1'ljJ(0))is not zero.

The quantities N(O) and N(X) associated with the operators N(O) and N(X), respec-

tively, have only values between 0 and 1. At time t = 0, N(O)= 1 and N(X) = OJthus

Eqs. (44) and (45) are satisfied. However, 1'ljJ(t)}cannot, for any length of time, remain an

eigenvector of N(X) with eigenvalue zero as it is in Eq. (45). The expressions of the opera-

tors QR and p(x) contain some terms with only creation operators, generating electrons and

positrons with plane-wave functions extending over the whole space. In particular, the state

defined as the vacuum in Fock space is not an eigenvector of either QR or N(X). The initial

state, 1.,p(0)),with properties implied by Eqs. (44) and (45), is an eigenvector of N(O) and

of N(X), thus a superposition of states with different numbers of electron-positron pairs.

Eq. (45) means that, at time t = 0, using a classical picture, there are equal numbers

of electrons and positrons in the volume VR' The electric charge QR does not necessarily

remain zero because an electron or a positron belonging to a pair initially located in or

around VR can move in or out of the volume VR' To reproduce the phenomenon mentioned

in Refs. [3], [20], [21], and [22], it is sufficient that this electron or positron moves at a

speed less than c, (see Fig. 2). Because of the indistinguishability of identical particles, one

cannot tell if the electron found in VR is the electron originally confined in V5 or a member

of one of these pairs initially located near VR' However, the classical picture involving the

pairs has all the essential features of the quantum theoretical predictions and it does not

require propagation faster than light.

Whatever type of particle is confined in the initial state, it can be assigned a specific

quantum number that no other kind of particle could have. A classical picture similar to

the picture of the confined electron can be constructed, using that quantum number instead

of the electric charge. The effect reported by Refs. [3], [20], [21], and [22] will occur due

to pairs of particles in and around V R at time t = O. In the light of our demonstration, we

can reinterpret the result obtained in these references. It shows that, to ensure causality in

relativistic quantum field theory, the phenomenon of creation of pairs of particles cannot

be ignored.
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4.2 Using a KO-~ System

4.2.1 The Mechanism and the Computation

In Ref. [4], another mechanism is proposed to achieve faster-than-light communication. A

neutral vector meson with JPc = 1-- decays by strong interaction into a pair of neutral

pseudoscalar mesons such as the KO and r. These mesons, which we call 1(0 and -go

for identification, soon start occupying two different regions of space, Vs and VR' At time

T, a measurement M is performed to detect any particle with the properties of a -go in

the volume YR, The probability of a positive answer is PXO' One considers the effect of

performing another measurement M$, in Vs at time t$ < T, to determine if the particle in

Vs has decayed or not, and, in the case where it has decayed, if the decay products form a

system with the quantum numbers of the long lived K2 or of the short lived K~ state. In

Ref. [4], it is claimed that the probability PJt1 is different whether or not Ms is performed,

even if one does not know the result of M$'

This case is an example of the general case considered in Subsec. 2.2 except that, as

in Subsec. 3.3, field theory does not have to be invoked. In Ref. [4], the evolution of the

state function of the two particles, once they are spatially separated and noninteracting,

is properly described by an evolution operator Uo(t) that factorizes, as in Eq. (41), into

two parts, Us(t) and UR(t), acting on the variables qs and qR of the particle in Vs and VR,

respectively. Each of the two probabilities for the results of measurements M and Ms in

VR and Vs, respectively, is compu ted using only those variables, either qR or qs, that are

observable in the region where the measurement is made. It follows that the measurement

operators M of M and Ms of Ms, in the Heisenberg representation, do commute. Our

demonstration then applies, and, contrary to the claim of Ref. [4], the probability P-ytJ,

should be the same whether or not M$ is performed.

In Ref. [4], a major deviation is taken from conventional quantum theory. The result

of measurement Ms is assumed to have three possible outcomes: one corresponding to a

particle in Vs that has not decayed, a second one to decay products with quantum numbers
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specific of the state K£, and the third with the quantum numbers of the K~. ITCP is not

conserved, the two latter states, IXS,2)and IXS,3), are not necessarily orthogonal. Then the

measurement operator IXS,2)(XS,21associated with the detection of a decay product with

the quantum numbers of a K~ does not commute with the similar operator IXS,3)(XS,3!

associated with the decay products with the quantum numbers of the 1(£. Simultaneous

measurements with noncommuting operators are known to be forbidden in quantum theory.

Our demonstration permits one to see why this deviation from quantum theory may lead

to a claim of possible faster-than-light communication.

Consider the three projection operators IXS,l)(XS,ll, IXS,2)(XS,21,and IXS,3)(XS,31associ-

ated with the results of the measurement Ms assumed to be possible in Ref. [4]. They

cannot add up to the identity operator I as in Eq. (34) because, instead,

L fIS'~8(ts) = L IXS'~8 )(Xs,#£81
~, ~,

= I + ~ ( TJ IXS,2)(XS,31+ TJ* IXS,3)(XS,21)

ITJI2
( )- IXS,2)(XS,21+ IXS,3)(XS,31,

(50)

where TJis the scalar product of IXS,2)and IXS,3)

TJ= (Xs,2IXs,3) . (51)

Then Eq. (35) does not follow from Eq. (32) and the probability distribution in VR can

become dependent on the measurement in Vs. Of course the possibility of communication

faster than light disappears if CP is conserved because, then, IXS,2)and IXS,3)are orthogonal

states. It is well known that the degree of orthogonality of the 1(£ and K~ states is related

to the possibility to differentiate their decay products, [23] and [24].

4.2.2 The Error Computation

The authors of Ref. [4] were aware of the violation of quantum theory implied by IXS,2)

and IXS,3) not being orthogonal. They tried to estimate the error generated by this and

concluded that it was negligible. Our demonstration shows that the error is, on the contrary,
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equal to the effect claimed. Our demonstration also provides a general method to estimate

the spurious faster-than-light effect generated by a computation in which the eigenvectors

of a measurement operator are approximated by states that are not orthogonal. Let us call

two such nonorthogonal states IXS,2) and IXS,3) as in this example. When expression (50)

is introduced into Eqs. (32) and (29), the probability PJj differs from the value Po,Jjof Eq.

(9) by a first order term in TJ. In Ref. [4], the discrepancy was arbitrarily assumed to be

of second order in TJand thus was grossly underestimated. This point has been already

mentioned in Ref. [18], where a more-detailed computation has also been made to rebut

the conclusion of Ref. [4].

Let us finally point out that, among all principles of quantum theory, the one implied

by Eq. (34) is one of the most difficult to abandon because, as said in Subsec. 2.2.2, it is

related to conservation of probability. If Eq. (34) had to be abandoned, other principles

would have to be modified as well.

4.3 Conclusions

4.3.1 A General Method to Analyze Faster-than-Light Devices

Other schemes to communicate faster than light using two measurements performed in space

like regions have been proposed (such as the two-photon system of Ref. [5] for instance).

This demonstration shows that they must involve processes incompatible with the principles

of quantum theory, as was also shown in Refs. [25] and [26] for the scheme of Ref. [5].

In addition, our demonstration provides a general method for identifying the property of

relativistic quantum theory that is violated by any such scheme. Step 1 consists of trying

to write measurement operators for both measurements and an initial state function 1"p(0)).

Step 2 consists of finding an expression for the projection operators associated with the

measurement results, as in Eq. (3). Then, in the following steps, one can introduce these

expressions into Eqs. (23) to (35), consecutively. Whenever one of these equations does

not hold, the principle that justifies it is violated. In the case of Ref. [5], at Step 1, a

measurement operator acting on the variables of a two-photon system cannot be defined
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with the alleged properties.

Of course, if nature behaves exactly as predicted by our present view of quantum the-

ory, there are correlations that can be explained only by faster-than-light causal influences

between measurements performed in space like regions, [6], [7], [8], [9], [10], [11], and [12],

but nature conspires to prevent us from using these effects for communication.

4.3.2 What if Quantum Theory is only Approximate

It would be preposterous to claim that no violation will ever be found of our present version

of quantum theory. Alternatives should be considered. Models have been constructed to give

quantum systems a realistic description, which is missing in the Copenhagen interpretation

of quantum theory.

Among the possible alternatives to quantum theory, it is possible to envisage one, [27],

with a rudimentary locality property, Le., a property according to which, in a fundamental

rest frame, all causal effects propagate at speeds less than a finite velocity but greater than

the velocity of light c. The "collapse" of the state function propagates at that speed, whereas

it is instantaneous in quantum theory. For very short time intervals and large distances in

the fundamental rest frame, the model predicts correlations between measurement results

different from those predicted by quantum theory. These circumstances would be rare, and

these deviations could not yet have been tested experimentally. Therefore, the model is

not in contradiction with experimental data so far. However, theoretically, the collapse of

the state function in the model is not always described by Eq. (25). Setting up conditions

where model and quantum theory disagree, the model predicts that one could communicate

at a speed greater than that of light in the fundamental rest frame (see Subsec. 4.6 of Ref.

[27]). However, in all the usual circumstances, including all the experimental conditions of

experiments performed to date, the predictions of relativistic quantum theory are upheld

by the model, and this demonstration shows that, under these conditions, faster-than-light

communication is not possible.

This latter example is given to show that the possibility of faster-than-light communica-
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tion is not unthinkable. It is in contradiction with quantum field theory, which is the only

known relativistic quantum theory. Justification for any effect providing faster-than-light

communication should not be looked for in theories that abide with orthodox quantum field

theory but in theories that allow some deviations from it.
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